DEPARTMENT OF CIVIL ENGINEERING

Periyar Nagar, Vallam, Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Fax: +91- 4362 - 264660 Email:headce@pmu.edu Web: www.pmu.edu

CURRICULUM & SYLLABUS

(For the candidates admitted from 2022-2023 onwards Based on Outcome Based Education)

FOR

M.TECH (Environmental Engineering)

DEGREE PROGRAMME

REGULATION - 2022

7

VISION	To be a University of global dynamism with excellence in knowledge and
	innovation ensuring social responsibility for creating an egalitarian society.

MISSION	UM1	Offering well balanced programmes with scholarly faculty and state- of-art facilities to impart high level of knowledge.
	UM2	Providing student - centred education and foster their growth in critical thinking, creativity, entrepreneurship, problem solving and collaborative work.
	UM3	Involving progressive and meaningful research with concern for sustainable development.
	UM4	Enabling the students to acquire the skills for global competencies.
	UM5	Inculcating Universal values, Self-respect, Gender equality, Dignity and Ethics.

CORE VALUES

- **♣** Student centric vocation
- ♣ Academic excellence
- ♣ Social Justice, equity, equality, diversity, empowerment, sustainability
- ♣ Skills and use of technology for global competency.
- **♣** Continual improvement
- **4** Leadership qualities.
- **♣** Societal needs
- ♣ Learning, a life long process
- **♣** Team work
- **♣** Entrepreneurship for men and women
- **4** Rural development
- ♣ Basic, Societal, and applied research on Energy, Environment, and Empowerment.

DEPARTMENT OF CIVIL ENGINEERING

VISION	To create technocrats in the discipline of Civil Engineering through research
	integrated academic programme of UG, PG and Ph.D. of global standards and in
	turn contribute to the socio-economic development of the nation through research
	and consultancy.

MISSION	DM1	To create, disseminate and integrate knowledge of science, engineering and
		technology through innovative teaching learning process that expands Civil
		Engineering Knowledge base and enhance the betterment of industry and
		human society
	DM2	To develop, perform forward looking research by integrating proper blend of
		applied and theoretical knowledge with a positive impact for the society
	DM3	To educate, inspire and create competent civil engineering professionals who
		possess the knowledge and skills required by industries for careers or to
		become an entrepreneur
	DM4	To serve as a reliable, highly capable resource for society, the profession and
		the university through activities in the professional organization, committees
		, consultancy and continuing education

Table: 1 Mapping of University Mission (UM) and Department Mission (DM)

	UM 1	UM 2	UM 3	UM 4	UM 5
DM 1	2	3	2	1	3
DM 2	1	2	2	1	2
DM 3	2	3	3	2	2
DM 4	3	2	2	2	3
	8	10	9	6	10

1-Low 2- Medium 3 – High

PROGRAMME EDUCATIONAL OBJECTIVES

Graduates from M.Tech. Environmental Engineering will be able to

PEO1	Graduates will successfully apply the Environmental Engineering concepts to the formulation and provide solution to the emerging technical problems in industry, government or other organizations towards implementing efficient Environmental
	Engineering practices.
PEO2	Graduates will have the ability to use their education to be lifelong learners and in turn utilize intellectual curiosity in enhancing technical, personal and professional growth.
PEO3	Will be able to carry out research and development and pursue higher education in the field of Environmental Engineering.
PEO4	Graduates will be aware of ethical, social and cultural issues within a global context and their importance in the exercise of professional skills and responsibilities.

within two to four years of graduation

Table: 2 Mapping of Program Educational Objectives (PEOs) with Department Mission (DM)

	DM 1	DM 2	DM3	DM 4
PEO 1	3	2	1	1
PEO 2	2	3	2	1
PEO 3	1	1	3	2
PEO 4	2	1	1	3
	8	7	7	7

1- Low 2 – Medium 3-High

PROGRAM OUTCOMES

A graduate at the end of the programme will be able to

PO 1	Demonstrate in depth knowledge in field of Environmental Engineering with upto date information on latest technologies and global trends.
PO 2	Analyze complex Environmental Engineering Systems and formulate solutions as an individual or group through skills, tools, techniques, methods or literature survey.
PO 3	Create, select, learn and apply appropriate techniques, resources, and modern engineering and IT tools to complex Environmental Engineering problems with an understanding of the limitations
PO 4	Demonstrate knowledge and understanding of Engineering and management principles and apply the same to one's own work, as a member and leader in a team, manage projects efficiently in respective disciplines and multidisciplinary environments after consideration of economic and financial factors.
PO 5	Communicate with the Engineering community, and with society at large, regarding complex engineering activities confidently and effectively, such as, being able to comprehend and write effective reports and design documentation by adhering to appropriate standards, make effective presentations, and give and receive clear instructions.
PO 6	Recognize the need for, and have the preparation and ability to engage in life-long learning independently, with a high level of enthusiasm and commitment to improve knowledge and competence continuously.
PO 7	Demonstrate professional and intellectual integrity, professional code of conduct, ethics of research and scholarship, consideration of the impact of research outcomes on professional practices and understand the responsibility to contribute to the community for sustainable development of society.

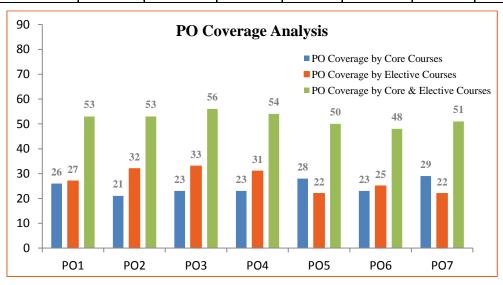


 Table 3 Mapping of Program Educational Objectives (PEOs)
 with Program Outcomes (POs)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	a	b	c
PEO 1	2	2	2	0	2	0	1	3	1	2
PEO 2	1	2	2	2	1	3	3	3	1	2
PEO 3	1	1	1	3	1	3	2	3	3	3
PEO 4	1	1	1	1	1	1	1	3	1	3
Total	5	6	6	6	5	7	7	12	6	10
Scaled Levels	2	2	2	2	2	2	2	3	2	3

a – Employer Survey b – Alumni Survey c – Higher studies/Core company placement 0-0 1-4 = 1 4 - 8 = 2 9 - 12 = 3

Table 4 Courses Versus PO mapping

		PO1	PO2	PO3	PO4	PO5	PO6	PO7
1.	YEN101	2	1	3	2	1	1	1
2.	YEN102	1	2	1	2	1	1	1
3.	YEN103	2	2	1	2	2	2	3
4.	YEN106	2	1	1	2	2	2	2
5.	YRM107	3	1	1	1	3	2	3
6.	YEN109	2	1	1	2	1	2	1
7.	YEN201	2	2	3	3	3	2	3
8.	YEN202	3	2	2	2	3	2	3
9.	YEN203	3	1	2	2	2	2	2
10.	YEN206	2	3	3	1	3	1	3
11.	YEN207	2	2	2	1	3	2	3
12.	YEN302	1	2	2	1	2	2	2
13.	YEN401	1	1	1	2	2	2	2
	Total	27	32	33	31	22	25	22
14.	YEN104A	2	1	2	3	1	1	1
15.	YEN104B	1	1	2	3	1	2	2
16.	YEN104C	2	2	2	2	1	2	1
17.	YEN105A	2	2	3	3	3	2	3
18.	YEN105B	2	2	2	3	2	1	2
19.	YEN105C	2	2	2	1	1	1	1
20.	YEN204A	2	3	2	1	1	1	1
21.	YEN204B	1	2	2	2	1	1	1
22.	YEN204C	3	3	2	2	2	2	2
23.	YEN205A	2	3	2	2	1	3	1
24.	YEN205B	1	3	3	3	1	3	3
25.	YEN 205C	1	2	3	2	1	2	1
26.	YEN302A	2	2	3	2	2	1	1
27.	YEN302B	2	1	1	1	2	2	1
28.	YEN 302C	2	3	2	1	2	1	1
	Total	27	32	33	31	22	25	22
	Grand Total	53	53	56	54	50	48	51

SEMESTER-WISE STRUCTURE OF CURRICULUM

REGULATIONS - 2022

(Applicable to the students admitted from the Academic year 2022-2023) **SEMESTER I**

Catagogg	Sub.	Sub. Name of the Course			veek	С	Н
Category	Code	Code Name of the Course		T	P	J	П
PCC	YEN101	Environmental Chemistry	3	0	0	3	3
PCC	YEN102	Environmental Microbiology	3	0	0	3	3
PCC	YEN103	Principles and Design of Physico- Chemical Treatment Systems	3	1	0	4	4
PEC	YEN104*	Elective - I	3	0	0	3	3
PEC	YEN105*	Elective – II	3	0	0	3	3
PCC-L	YEN106	Environmental Quality Measurements Laboratory	0	0	4	2	4
AICTE Mandatory Course	YRM107	Research Methodology and IPR	2	0	0	2	2
AICTE-Audit	YEGOE1	English for Research Paper Writing	2	0	0	0	2
PCC-L	YEN109	Microbiology Laboratory	0	0	4	2	4
		TOTAL	19	1	8	22	28

SEMESTER II

Catagony	Sub.	Name of the Course	Hour	s per w	С	Н	
Category	Code	Name of the Course	L	T	P	ن	П
PCC	YEN201	Transport of Water and Waste water	3	0	0	3	3
PCC	YEN202	Biological Treatment of Wastewater	3	0	0	3	3
PCC	YEN203	Environmental Impact Assessment	3	0	0	3	3
PEC	YEN204*	Elective – III	3	0	0	3	3
PEC	YEN205*	Elective – IV	3	0	0	3	3
PCC-L	YEN206	Environmental Engineering Processes Laboratory	0	0	4	2	4
PCC-L	YEN207	Mini Project	0	0	4	2	4
AICTE-Audit	YPSOE1	Constitution of India	2	0	0	0	2
		TOTAL	17	0	8	19	25

SEMESTER III

Category	Sub.	Nama at the Cource	Hours per week			С	Н
	Code	Name of the Course	L	T	P	L	П
PEC	YEN301*	Elective -V	3	0	0	3	3
PCC-L	YEN302	Dissertation Phase – I	0	0	20	10	20
OEC		Open Elective		0	0	3	3
		TOTAL	06	0	20	16	26

SEMESTER IV

Catagory Sub.		Name of the Course	Hour	Hours per week			Н
Category	Code	Name of the Course	L	T	P	ر	П
PCC-L	YEN401	Dissertation Phase – II	0	0	32	16	32
		TOTAL	0	0	32	16	32

TOTAL CREDITS - 73

PCC - Professional Core Course

PEC- Professional Elective Course

OEC - Open Elective Course

PCC-L - Professional Core Course - Lab

Note:

- 1. HOD concerned has to provide options for selecting the relevant MOOC courses or any elective paper which are offered.
- 2. The credit distribution is followed as per the guidelines given by AICTE/UGC.

PROFESSIONAL ELECTIVE COURSES

Elective I

Sub. Code	Name of the Course		Hours per week			
Sub. Coue			T	P	·	
YEN104A	Energy and Environment	3	0	0	3	
YEN104B	Environmental Economics	3	0	0	3	
YEN104C	Air Pollution and Control	3 0 0		3		

Elective II

Sub. Code	Name of the Course	Hou	C		
Sub. Coue	Name of the Course	L	T	P	C
YEN105A	Instrumental Methods and Analysis of Environmental Pollutants	3	0	0	3
YEN105B	Theory and Practice of Industrial Wastewater Treatment	3	0	0	3
YEN105C	Noise Pollution and Control Engineering	3	0	0	3

Elective III

Sub. Code	Name of the Course	Hours	C		
Sub. Coue	Name of the Course	L	T	P	C
YEN204A	Environmental Biotechnology	3	0	0	3
YEN204B	Environmental Geotechnology	3	0	0	3
YEN204C	Solid and Hazardous Waste Management	3	0	0	3

Elective IV

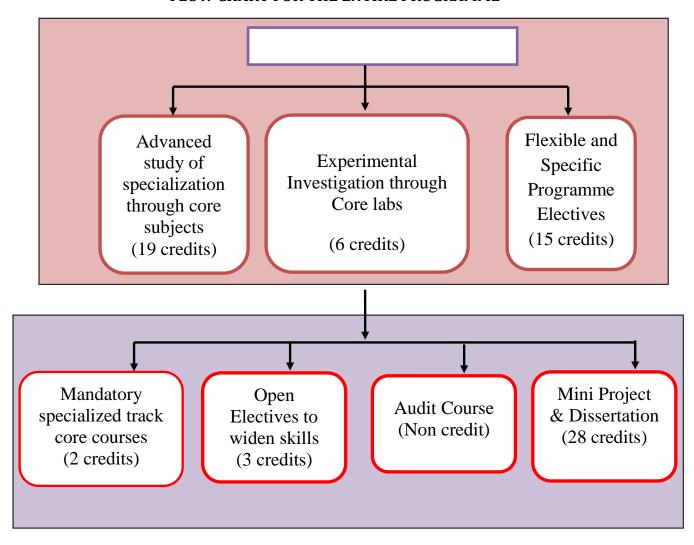
Sub. Code	Name of the Course	Hour	_		
Sub. Coue	Name of the Course	L	T	P	
YEN205A	Operation and Maintenance of Water and Wastewater Treatment Systems	3	0	0	3
YEN205B	Ground Water Contamination and Transport Modeling	3	0	0	3
YEN205C	Simulation and Modeling in Environmental Systems	3	0	0	3

Elective V

Sub. Code	Name of the Course	Hour	C		
Sub. Code	Sub. Code Name of the Course				C
YEN301A	Remote sensing and GIS for Environmental	3	0	0	3
	Applications				
YEN301B	Sustainable Engineering	3	0	0	3
YEN301C	Membrane Technologies for water and Wastewater Treatment	3	0	0	3

AUDIT COURSES

Sub. Code	Name of the Course	Hour	C		
Sub. Code	Name of the course		T	P	·
YEGOE1	English for Research Paper Writing	2	0	0	0
YPSOE1	Constitution of India	2	0	0	0


OPEN ELECTIVES

Sub Codo	Sub. Code Name of the Course		Hours per week			
Sub. Code			T	P	C	
YCOOE1	Business Analytics	3	0	0	3	
YMEOE1	Industrial Safety	3	0	0	3	
YMAOE1	Operations Research	3	0	0	3	
YCOOE2	Cost Management of Engineering Projects	3	0	0	3	

Table 3 Distribution of credits and course types

S.No	Course Type	Symbol	Credits		
1.	Professional Core Course	PCC	19		
2.	Professional Elective Course PEC		15		
3.	Open Elective Course	OEC	3		
4.	Professional Core Course - Lab	PCC-L	6		
5.	Project	Proj	28		
5.	AICTE Course - Audit	AICTE-Audit	0		
6.	AICTE Course - Mandatory	AICTE- Mandatory	2		
	Total				

FLOW CHART FOR THE ENTIRE PROGRAMME

		Course Code	Course Name		L	T	P	С
l]	YEN101	Environmental Chemistry		3	0	0	3
Course	Outcon	ne: After the completio	n of the course, students will be able to					
CO1	Studer polluti		ency in solving environmental issue	s of	chemi	cals b	ased	
CO2	Ability	to determine chemic	als mobility in aquatic systems					
соз	Ability	to identify contamina	nting chemicals in air and their fate					
CO4	Understand the type of soil contaminants and provide remediation							
CO5	Identi	fy emerging environm	ental contaminants including speciatio	n				
CO	URSE C	CONTENT						
UN	IIT I	INTRODUCTION						9
		Stoichiometry and product(Ksp), he solubility in water	mass balance-Chemical equilibria avy metal precipitation, amphote and species distribution –Chemica al properties, double layer the oids, coagulation	ric h l kine	ydrox etics, l	xides, First o	CO2 order,	
UN	IT II	AQUATIC CHEMIS	TRY					9
UN	IT III	Fate of chemicals hydrolysis, photochemicals-Metals, diagrams, redox zo ATMOSPHERIC Cl Atmospheric structure photochemical sm	ture –-chemical and photochemical og. Ozone layer depletion, greenhou	izatio datio l redu tion react ise ga	on, pa n of uction tions	artitio synt n, Eh – nd glo	oning, thetic – pH	9
		Air quality parame	ture – Acid rain - origin and compos eters-effects and determination	1011	or pa	lucuia	1168.	
UN	IT IV	SOIL CHEMISTRY						9
		•	osition of soil-Clays- cation exchang reactions in soil. Reclamation of con					
UN	IT V	EMERGING AREA	S					9
			chemistry, Atom economy, mass in	dex -	Nanc	mate	erials,	

CNT, titania, composites, environmental applications.

TEXT BOOKS

- 1. Sawyer, C.N., MacCarty, P.L. and Parkin, G.F., Chemistry for Environmental Engineering and Science, Tata McGraw Hill, Fifth edition, New Delhi 2003.
- 2. Colin Baird 'Environmental Chemistry', Freeman and company, New York, 2011.
- 3. Manahan, S.E., "Environmental Chemistry", Ninth Edition, CRC press, 2009.
- 4. Ronald A. Hites ,"Elements of Environmental Chemistry", Wiley, 2nd Edition, 2012.

- Des W. Connell, "Basic Concepts of Environmental Chemistry", CRC Press, 2nd Edition, 2005
- 2. Gary W VanLoon, Stephen J Duffy," Environmental Chemistry: A Global Perspective", Oxford University Press, 2010

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3		1				
CO2		3	2		1	2	1
CO3			3			1	1
CO4	2		3	1			1
CO5	2		2	1			1
Total	2	1	3	2	1	1	1

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Semester	Course Code	Course Name	L	T	P	C
Ī	YEN102	Environmental Microbiology	3	0	0	3

- **CO1** Explain the basic importance and functional elements of environmental microbiology including the potential applications in the environment
- CO2 Understand and describe the type of microorganisms in the environment, their importance in water supplies and the role of microorganisms in the cycling of nutrients in an ecosystem.
- Understand the metabolic processes on carbohydrates, protein and lipids, importance of enzymes, production of energy and the various additional metabolic processes.
- Select and apply appropriate methods for assessing the water, air and soil borne pathogens, their health implications, importance of microbes in aerobic and anaerobic cycles and deterioration of water bodies
- Cos Conduct testing and research on toxicology, understand the importance of test organisms, environmental applications such as biomagnifications, biomonitoring and in developing risk based standards.

COURSE CONTENT

UNIT I FUNDAMENTALS OF MICROBIOLOGY

Cell – Prokaryotes Vs Eukaryotes – Classification of microbes – Ultra structure of a bacterial cell and cell wall – Size, shape and arrangement of bacterial cells – Structure of DNA (double helical and chemical) – RNA types and plasmids – Types of Microbiological media – Methods of sterilization and inoculation – Isolation, development of pure culture and preservation of soil bacteria – Simple and Gram staining – Growth of bacteria – Factors influencing growth – Growth curve

9

9

9

UNIT II MICROBIAL ECOLOGY AND METABOLISM

Ecological group of microorganisms based on Oxygen requirement, Carbon source, temperature, habitat and nutrient requirements – Extremophile bacterial types – Types of interaction – symbiosis, mutualism, commensalism, competition, parasitism and predation – Plant and animal microbes interactions – Glycolysis – Kreb's cycle – β -Oxidation and Electron transport chain.

UNIT III SOIL MICROBIOLOGY

Soil bacteria, actinomycetes, algae, fungi and protozoans and their role–Rhizosphere microbes – Carbon, Nitrogen, Phosphorous and Sulfur cycles – Biodegradation (cellulose, pectin) and Bio-deterioration (leather) – Bioremediation of oil spills – Microbial leaching of mineral ores – Bioaccumulation and Biomagnification

UNIT IV AQUATIC MICROBIOLOGY

9

Hydrological cycle – Marine, Brackish and Fresh water ecosystems – Water borne bacterial diseases – Biological indicators of water pollution – Quality checking of potable water – Algae in water supplies – problems and control – Microbiology of sewage treatment.

UNIT V ATMOSPHERIC MICROBIOLOGY

9

Aerofungi, algae and bacteria – Microbial aeroallergens – Deposition of microbes in atmosphere – Gravitational setting, Surface impaction and rain and electrostatic deposition – Air borne microbial diseases – Pertussis, Q fever

TEXT BOOKS

- 1. Pelczar Jr. MJ, Chan ECS and Krieg, NR., "Microbiology", McGraw Hill. Inc, New York, 1993.
- 2. Prescott, L.M., Harley, J.P. and Klein, D.A., "Microbiology", McGraw Hill, New York, 2006. Stanley E. Manahan, "Environmental Science and Technology", Lewis Publishers, 200
- 3. Atlas, R.A. and Bartha, R., "Microbial Ecology Fundamentals and Application", Benjamin Cummings, New York, 2000.

- 1. Egbert Boeker and Rienk Vangrondella, "Environmental Science", John Wiley & Sons Ltd., USA, 2001.
- 2. Grant, Wd. and Long, PL., "Environmental Microbiology", Blackie Glasgow, London, 1981.
- 3. Grerard J. Tortora, Berdell R. Funke, Christine and L. Case, "Microbiology: An Introduction", Benjamin Cummings, U.S.A., 2004.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3				1		
CO2		3					
CO3		3	3				
CO4			2	3			
CO5				3		2	1
Total	1	2	1	2	1	1	1

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Semest	ter	Course Code		Course Na	ame	L	T	P	С
I		YEN103	_		gn of Physico- ent Systems	3	1	0	4
Course	Out	come: After the com	npletion of the	e course, stude	ents will be able to				
CO1		aluate various ph l wastewater	ysical and c	chemical trea	atment options fo	r treat	ment	of wat	ter
CO2	-	olain the mechan advantages	ism behind	the treatme	nt processes and	their a	dvanta	ages a	nd
CO3	Des	sign the treatmen	nt scheme fo	or municipal	water and waste	water			
CO4	Ana pla	-	needs on r	residue man	agement and up	gradat	ion of	existi	ng
CO5	Gai	n knowledge on o	operation a	nd maintena	nce of various tre	atmen	t units	3	
COUR	SE C	ONTENT						Н	ours
UNIT	I	INTRODUCTION	I						9
		Pollutants in	water and	wastewate	r–characteristics,	standa	rds f	or	
		performance- sig	gnificance of	physico-cher	nical treatment–Se	lection	criteri	a-	
		types of reactor-	reactor selec	tion-batch-co	ntinuous type-kin	etics			
UNIT	II	PHYSICAL TREA	TMENT						12
		Physical treatme	ent - screen	ning – mixin	g, equalization –s	edimen	tation	-	
		filtration – evapo	oration– inci	neration-gas	transfer-mass tra	nsfer co	efficie	nt	
		adsorption – is	sotherms -	membrane	separation, Re	verse	Osmos	is,	
		Nanofiltration, U	ltrafiltration	and Electrod	lialysis, Distillation	- Strip	ping ai	nd	
		Crystallization –		nces.					
UNIT	III	CHEMICAL TREA							9
		-		· ·	ation - flocculation	-			
		flotation - solid			tion-Disinfection,			-	
		_	hods, Solver	nt extraction	-advanced oxida	tion/re	ductio	n-	
****		recent trends	·· avn . · · · · · ·						
UNIT	IV	DESIGN OF MUN				. 1			15
			_		pal water treatme	_			
			· ·		larifier-tube settli	•	-		
				_	er, dual media filte				
		_			&M aspects-case		resid	ue	
		management – uj	pgradation of	i existing plar	nts – recent trends.				

UNIT V DESIGN OF WASTEWATER TREATMENT PLANTS

Design of municipal wastewater treatment units-screens- grit chamber-settling tanks- sludge thickening - sludge dewatering systems - sludge drying beds - design of industrial wastewater treatment units - equalization - neutralization - chemical feeding devices – mixers - floatation units - oil skimmer - flowcharts – layouts -construction and O&M aspects – case studies, retrofitting - residue management – upgradation of existing plants – recent trends.

TEXT BOOKS

- 1. Metcalf Eddy ,Inc. George Tchobanoglous, Franklin Burton H, David Stensel," Wastewater Engineering", Tata McGraw-Hill Education ,2002
- 2. Hendricks," Water Treatment Unit Processes: Physical and Chemical," CRC, 2006.
- 3. Qasim.S.R., Guang Zhu., "Wastewater Treatment and Reuse" Volume 1& 2 2018.
- 4. Ajey Kumar Patel, Achanta Ramakrishna Rao," Aeration Systems for Wastewater Treatment", Lap Lambert Academic PublishinG,-2011

- 1. Lee, C.C. and Shun dar Lin, "Handbook of Environmental Engineering Calculations", McGraw Hill, New York, 1999.
- 2. CPHEEO manual "Manual for sewerage and sewage treatment systems" Part A,B,C, Ministry of Urban development, New Delhi, 2013.
- 3. CPHEEO manual "Manual for water supply and treatment" Ministry of Urban Development, New Delhi, 1999.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	2	3			2	1	3
CO2	2	2	3		2	1	1
CO3		3		3	3	1	3
CO4				3	2	1	2
CO5	3	2		3		3	2
Total	2	2	1	2	2	2	3

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Semester	Course name	Course Code	L	T	P	C
Ĭ	YEN106	Environmental Quality Measurements Laboratory	0	0	4	2

- **CO1** Calibrate and standardize the equipments
- **CO2** Explain the operation and mechanism of different analytical equipments and their advantages and limitations
- **CO3** Relate the theoretical knowledge of sampling and analysis into lab practice
- **CO4** Estimate the concentration of various parameters in water, wastewater, and ambient air
- **CO5** Perform field oriented testing of Solid waste water, wastewater and soil

List of Experiments:

1. Good Laboratory Practices, Quality control, calibration of Glassware

a) Water

- a. Determination of pH, Turbidity and Electrical conductivity
- b. Determination of Alkalinity
- c. Determination of Acidity
- d. Determination of Chlorides
- e. Determination of Total Hardness
- f. Determination of iron
- g. Determination of Sulphates
- h. Determination of Fluorides
- i. Determination of Residual chlorine
- j. Test on Dissolved Oxygen

b) Wastewater

- a. BOD
- b. COD
- c. Total Solids, Suspended Solids, Volatile Solids, Non Volatile Solids
- d. Determination of Ammoniacal Nitrogen

c)Air

a. Determination of Ambient Air Quality Parameters- SPM, CO, NO_x and SO_x

d) Soil

a. Soil Analysis - pH and Conductivity

e) Noise

b. Determination of Noise

c.

f) Solid waste

- a. Composition of Municipal Solid waste
- b. Proximate and Ultimate Analysis

TEXT BOOKS

- APHA, "Standard Methods for the Examination of Water and Wastewater", 22nd Edition, Washington, 2012.
- 2. "Laboratory Manual for the Examination of water, wastewater soil Rump", H.H. and Krist, H. Second Edition, VCH, Germany, 3rd Edition, 1999.
- 3. "Methods of air sampling & analysis", James P.Lodge J (Editor) 3rd Edition,
- 4. Lewis publishers, Inc, USA,1989. Standard Methods for the Examination of Water and Wastewater, 20th Edition.
- 5. Manual on water supply and Treatment, CPHEEO, Ministry of Urban Development, GOI, New Delhi, 2000.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1				3			
CO2	3					3	3
CO3	2	2					1
CO4			2	2	3	3	
CO5	2			3	3	3	2
Total	2	1	1	2	2	2	2

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Semester	Course Code	Course Name	L	T	P	C
I	YEN109	Microbiology Laboratory	0	0	4	2

- **CO1** Explain the basic importance and functional elements of environmental microbiology including the types of microorganisms in air, water and soil.
- CO2 Understand and describe the type of microorganisms in the environment, their importance and the method of culturing of microorganisms in the laboratory.
- CO3 Understand the basic biochemical method of identification of microorganisms and to identify them using microscopial tool.
- Select and apply appropriate methods for detection in the water, air and soil borne pathogens, their health implications, importance of microbes in our daily life.
- COS Conduct testing and research on toxicology, the importance of test organisms, environmental applications of such microorganisms in toxicological studies and in developing risk based standards.

List of Experiments

- 1. Preparation of culture media
- 2. Isolation, culturing and Identification of Microorganisms
- 3. Microorganisms from polluted habitats (soil, water and air)
- 4. Measurement of growth of microorganisms
- 5. Biodegradation of organic matter in waste water Analysis of air borne microorganisms
- 6. Staining of bacteria.
- 7. Effect of pH, temperature on microbial growth
- 8. Pollutant removal using microbes from industrial effluent.
- 9. Bacteriological analysis of wastewater (Coliforms, E.coli, Streptococcus) MPN
- 10. Bacteriological analysis of wastewater (Coliforms, *Streptococcus*) MF techniques
- 11. Detection of Anaerobic Bacteria (*Clostridium* sp.)
- 12. Bioreactors (cultivation of microorganisms)

TEXT BOOKS

- 1. Benfield, L.D.; Weand, B.L.; Judkins, J.F. (1982) Process chemistry for water and wastewater. Prentice Hall Inc Englewood Cliffs New Jersey.
- 2. Weber Jr., W.J. (1972) Physico-chemical Process for Water Quality Control. Wiley Inc. Newyork.
- 3. Peavy, H.S., Rowe, D.R., Tchobanoglous, G. Environmental Engineering, McGraw Hills, New York, 1985.

	P01	PO2	PO3	P04	P05	P06	P07
CO1	2	2				3	
CO2	2	3				1	
CO3	2		2				
CO4	1		3	3		2	
CO5	1			3	2	1	1
Total	2	1	1	2	1	2	1

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Seme	ester	Course Code	Cours	se Name	L	T	P	C
I	I	YEN201	_	of Water and ewater	3	0	0	3
Course	Outcon	ne: After the completion	n of the course, stu	dents will be able to				
CO1	Under waste	stand general hydraul water	ics and need for p	roper collection and c	onveyan	ce of w	ater an	d
CO2	Design	economic diameters	of gravity and pun	nping mains and stora	ge reser	voirs		
CO3	Design	n and analysis of water	distribution netw	orks and apply comp	uter soft	wares		
CO4	Design	n sewer networks for v	arious flow condi	tions				
CO5		ate the quantity of stor	_	esign proper storm dr	ainage f	or spee	dy	
COUR	SE CO	NTENT						HRS.
UNIT	V r u	TRANSPORT OF WA Vater Storage and eservoirs- intakes, inits, capacity - sele conomic design of gr	Transmission, pressure condui ction of water p	ts, hydraulics - pur umps -economic de	nps an	d pum	ping	9
UNIT	S	MATERIALS FOR PI pecification for pip pads and stresses, waying, jointing and T	es, merits and d vater hammer, ca					9
UNIT	P e d d s	PISTRIBUTION SYST Principles of design quivalent pipe and listributions network listribution systems torage, distribution	n, analysis of control Newton Raphson	on methods, compunal design of network ontrol and prevent	ter appl ks, mair tion of	icatior itenan corro	ns in ce of	9
UNIT	N o F	TORM DRAINAGE Vecessity - combined of Formulation of rail cational methods – E	ainfall intensity mpirical Method	duration and freque				
UNIT	S	ANITARY SEWERA anitation technology naterials and ap	selection - sani	tary sewage flow es				9

sewers - partial flows - sewer design - sewer layouts- LOOP.

TEXT BOOKS

- 1. G.S.Bridie & J.S. Bridie, Water Supply and Sanitary Engineering, Dhanpat Rai and Sons, New Delhi, 2010.
- 2. Hammer, M.J. Water & Waste water Technology, John Wiley & Sons, New York, 7TH edition, 2012.
- 3. Garg, S.K., "Environmental Engineering I & II", Khanna Publishers, New Delhi 2007
- **4.** Manual on Water Supply and Treatment, CPHEEO, Government of India, New Delhi, 2000
- 5. Manual on Sewage and Sewerage system, CPHEEO, Government of India, New Delhi, 2000

- 1. 'Water supply and wastewater Removal' Vol.I. John Wiley and Sons Manual on Water Treatment, CPHEEO, Government of India, New Delhi, 2010
- 2. Hussain S.K. A Text book of water supply and sanitary Engineering, Oxford and IBH Publishing Co., New, 2010.
- 3. Larry W. Mays, Mays Larry." Water Distribution System Handbook, "McGraw-Hill Professional Publishing, 1999.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	2	3	3			1
CO2		3	3	2	3		2
CO3	2	2	3	3	3	2	3
CO4	2	2	3	3	3	2	3
CO5	1	1	3	3	3	2	2
Total	2	2	3	3	3	2	3

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Semester	Course Code	Course Name	L	T	P	C
II	YEN202	Biological Treatment of Wastewater	3	0	0	3

- **CO1** Understand the principles and significance of various biological treatment systems involved in water and waste water treatment.
- **CO2** Design various treatment systems of water and wastewater.
- **CO3** Develop conceptual schematics required for biological treatment of wastewater.
- **CO4** Translate pertinent criteria into biological treatment system requirements.
- **CO5** Gain knowledge on operation and maintenance of various treatment units

COURSE CONTENT

UNIT I INTRODUCTION

Objectives of biological treatment – significance – Principles of aerobic and anaerobic treatment - kinetics of biological growth – Factors affecting growth – attached and suspended growth - Determination of Kinetic coefficients for organics removal – Biodegradability assessment –selection of process-reactors-batch-continuous type

9

9

9

9

UNIT II AEROBIC TREATMENT OF WASTEWATER

Design of sewage treatment plant units –Activated Sludge process and variations, Sequencing Batch reactors, Membrane Biological Reactors-Trickling Filters-Bio Tower-RBC-Moving Bed Reactors-fluidized bed reactors, aerated lagoons, waste stabilization ponds – nutrient removal systems – natural treatment systems, constructed wet land – Disinfection – disposal options – reclamation and reuse – Flow charts, layout, PID, hydraulic profile, recent trends

UNIT III ANAEROBIC TREATMENT OF WASTEWATER

Design of units – UASB, up flow filters, Fluidized beds MBR, septic tank and disposal – Nutrient removal systems – Flow chart, Layout and Hydraulic profile – Recent trends.

UNIT IV SLUDGE TREATMENT AND DISPOSAL

Design of sludge management facilities, sludge thickening, sludge digestion, biogas generation, sludge dewatering(mechanical and gravity) Layout, PID,

hydraulics profile – upgrading existing plants – ultimate residue disposal – recent advances.

UNIT V OPERATION AND MAINTENANCE

9

Construction and Operational Maintenance problems – Trouble shooting – Planning, Organizing and Controlling of plant operations – capacity building - Retrofitting Case studies – sewage treatment plants – sludge management facilities.

TEXT BOOKS

- 1. Arceivala, S.J., "Wastewater Treatment for Pollution Control", Tata Mcgraw Hill, New Delhi, III Edition, 2006.
- 2. David Hendricks, "Fundamentals of Water Treatment Unit Process", CRC Press, New York, 2010
- 3. F.R. Spellman, "Hand Book of Water and Wastewater Treatment Plant operations", CRC Press, New York, III, Edition, 2013.

- 1. Manual on "Sewerage and Sewage Treatment" CPHEEO, Ministry of Urban Development, Government of India, New Delhi, 1999.
- 2. Metcalf & Eddy, INC, "Wastewater Engineering Treatment and Reuse", Fourth Edition, Tata Mc Graw-Hill Publishing Company Limited, New Delhi, 2003.
- 3. Qasim, S.R. "Wastewater Treatment Plant, Planning, Design & Operation", Technomic Publications, New York, II Edition, 1998.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	3	2		1	1	2
CO2	2	3	2	3	3	2	3
CO3	1	2	1		3	1	2
CO4	1		2	2	2	1	2
CO5	3	1	1	3	2	1	2
Total	3	2	2	2	3	2	3

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Semester	Course Code	Course Name	L	T	P	C
III	YEN203	Environmental Impact Assessment	3	0	0	3

- CO1 Understand the necessity of the impacts and risks that will be caused by projects or industries and the methods to overcome these impacts.
- Know about the legal requirements of Environmental Impact and Risk Assessment for projects.
- **CO3** Gain good knowledge on environmental impact assessment procedures and techniques adopted in the field.
- **CO4** Understand EIA as a technical, social process used for environmental governance.
- **CO5** Analyse the environmental impacts of the proposed projects

COURSE CONTENT

UNIT I UNIT I-INTRODUCTION TO EIA

9

Environmental Impact Assessment (EIA)- Environmental Impact Statement – Environmental Risk assessment –Legal and Regulatory aspects in India – Types and limitations of EIA – Terms of reference in EIA – Issues in EIA – National – Cross sectoral – social and cultural.

UNIT II METHODOLOGIES

9

Methods of EIA –Check lists – Matrices – Networks – Cost-benefit analysis – Analysis of alternatives – Case Studies.

UNIT III PREDICTION AND ASSESSMENT

9

Assessment of Impact on land, water and air, noise, social, cultural flora and fauna; Mathematical models; public participation – Rapid EIA.

UNIT IV ENVIRONMENTAL MANAGEMENT PLAN

9

Plan for mitigation of adverse impact on environment – options for mitigation of impact on water, air and land, flora and fauna; Addressing the issues related to the Project Affected People – ISO 14000

UNIT V CASE STUDIES

9

EIA for infrastructure projects – Bridges – Stadium – Highways – Dams – Multi-storey Buildings – Water Supply and Drainage Projects

TEXT BOOKS

- 1. Canter, L.W., "Environmental Impact Assessment", McGraw-Hill, New York. 2006.
- 2. Lawrence, D.P., "Environmental Impact Assessment Practical solutions to recurrent problems", Wiley-Interscience, New Jersey 2003.
- 3. Petts, J., "Handbook of Environmental Impact Assessment", Vol., I and II, Conwell Science London. 2009.

- 1. Biswas, A.K. and Agarwala, S.B.C., "Environmental Impact Assessment for Developing Countries", Butterworth Heinemann, London. 2004.
- 2. The World Bank Group, "Environmental Assessment Source Book Vol. I, II and III. The World Bank, Washington. 2001.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	2			2	3	2	3
CO2	3					2	2
CO3	3		2	2			
CO4	2		1	2	3	2	1
CO5	1	3	3	2	3	2	1
Total	3	1	2	2	2	2	2

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Semester	Course Code	Course Name	L	T	P	C
II	YEN206	Environmental Engineering Processes Laboratory	0	0	4	2

- **CO1** Perform common environmental experiments relating to water and wastewater quality, and know which tests are appropriate for given environmental problems.
- **CO2** Demonstrate and analyze basic reactor types and kinetics.
- **CO3** Determine the quantity of Sludge
- **CO4** Demonstrate and analyze basic environmental engineering processes (physical/chemical) for treatment of contaminants, including gas transfer and adsorption.
- **CO5** Analyse the basic methods of environmental parameters.

List of Experiments

- 1. Coagulation and Flocculation
- 2. Studies on Filtration- Characteristics of Filter media
- 3. Disinfection for Drinking water (Chlorination
- 4. Water Softening Lime and Caustic Soda Process
- 5. Sludge volume Index
- 6. Sedimentation Settling Column Analysis of Flocculating Particles
- 7. Adsorption Colour Removal by Adsorption
- 8. Heavy Metal Precipitation
- 9. Kinetics of Activated Sludge Process

TEXT BOOKS

- 1. Standard Methods for the Examination of Water and Wastewater, 20th Edition.
- 2. Manual on water supply and Treatment, CPHEEO, Ministry of Urban Development, GOI, New Delhi, 2000.

	P01	P02	PO3	P04	P05	P06	P07
CO1	3	3	3		2		3
CO2		3	3		2		3
CO3		3			3		1
CO4	3	3	3	2	3		2
CO5			3	3	2	3	2
Total	2	3	3	1	3	1	3

Semester	Course Code	Course Name	L		P	C	
II	YEN207	Mini Proiect	0	0	4	2	

CO1 Define and discuss an existing problem in Environmental Engineering Systems and summarize the solutions.

CO2 Discover various tools and mathematical/Engineering methods behind the solutions

CO3 Present the problem, objectives, literature and analyze various solutions.

CO4 Solve the problem using existing method by proper tools and produce the results.

COS Conclude, compare, report and present the solution proposed and the results obtained.

	P01	P02	P03	P04	P05	P06	P07
CO1	3	3			2	1	3
CO2			3	3	1	2	2
CO3		3			3	1	3
CO4	3	3	3		2	2	3
CO5					3	1	3
Total	2	2	2	1	3	2	3

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Semester	Course Code	rse Code Course Name		T	P	C
II	YEN302	Dissertation Phase - 1	0	0	20	10

CO1 Identify problems and contemporary tools to solve them efficiently.

CO2 Survey recent solutions proposed and outline the objectives and methods.

CO3 Explain the project ideas, findings and demonstrate the same

	P01	P02	P03	P04	P05	P06	P07
CO1	1	3	3		2	3	1
CO2	1	3			3	3	3
CO3	1	2	3	3	3	2	3
Total	1	2	2	1	2	2	2

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Semester	Course Code	Course Name	L	T	P	C
IV	YEN401	Dissertation Phase - II	0	0	32	16

CO1 Identify, Estimate, Track and cost the human and physical resources required, and make plans to obtain the necessary resources

CO2 Conclude, compare, report and present the solution proposed and the results obtained.

CO3 Extend the findings and develop a research article without any plagiarism and present

	P01	P02	P03	P04	P05	P06	P07
CO1				3	3	3	2
CO2	1	1	1	3	3	3	3
CO3	1	1	1	3	3	3	3
Total	1	1	1	2	2	2	2

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

ELECTIVES

Semest	er Cou	rse Code	Co	ourse Name		L	T	P	C
I	YE	N104A	Energy	and Environm	ent	3	0	0	3
Course	Outcome: A	fter the comple	tion of the cou	ırse, students wil	be able to				
CO1	Understan	d the waste ge	neration and _l	processing Philo	sophy				
CO2	Identify the	e various types	of waste reco	overy materials					
CO3	Gain know	ledge on separ	ation and rec	ycling of waste N	laterials				
CO4	Demonstra	ate the Waste h	andling and s	torage processe	S				
CO5	Gain know	ledge on instru	ımentation fo	r ensuring opera	ition and saf	ety			
COURSE UNIT I	CONTENT GENER								Hours 9
	compos		s uses-Was	Processing Phaste recovery ds		-			
UNIT II	RECOV	ERY OF WAS	TE MATERI	AL					9
		•		lastic recovery rous metals re	0,		•		
UNIT III	RECYCI	LING OF WAS	TE MATERI	AL					9
	Screeni	ng-Hammer n	nill-Products	e – Principles – s of recycling-R lling –Scrap fra	ecycling ap	plicat	ions-C		
UNIT IV	WASTE	HANDLING	SYSTEMS						9
		_		oly and demand systems-Acces	-	_		_	
UNIT V	DISOPA	AL OF WASTE	ī						9
		disposal-Ma ories-Develop on and safety	ment-Chim	Conveyance neys-Control	- Speci	fic ε strum	examp entat		

TEXT BOOKS

- 1. Vaish Troloki, Enery, Environment and Ecology, Vayu Education of India, New Delhi, 2001
- 2. Salvato, "Environmental Sanitation", John Wiley & Sons, NewYork, 1982
- 3. David Kut and Gerard Hare, "Waste recycling for energy recovery", Architectural Press, 1981.

- 1. Metcalf & Eddy, "Wastewater Engineering Treatment Disposal Reuse", Tata McGraw-Hill, New York, 2003.
- 2. Arcievala S.J., Wastewater treatment and Disposal Engineering and Ecology in pollution control, Marcel Dekker. Inc., New York, 1981.
- 3. Chandra and Adab,"Rubber and plastic Waste",Cbs,2004.

	P01	P02	P03	P04	PO5	P06	P07
CO1	3						
CO2	2	3	2	3			
CO3		2	3	3			
CO4	2		2	3			
CO5	2			3	1	1	1
Total	2	1	2	3	1	1	1

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Semest	er Course Code	Course Name	L	T	P	C			
I	YEN104B Enviro	Environmental Economics		0	0	3			
Course	Course Outcome: After the completion of the course, students will be able to								
CO1	Understand the Nature and significance of environmental economics								
CO2	Evaluate environmental damages for land, water, air and forest.								
CO3	Provide solutions to the environment problems								
CO4	Adopt the strategies for Prevention, control and abatement of pollution								
CO5	Formulate the environmental policy								
COURSE CONTENT									
UNIT I	THEORY AND CONCEPT					9			
	Nature and significance of environmental economics – be environment – welfare and enviro	asic theory – marke	t sys	tem aı	nd the				
UNIT II	ENVIRONMENT AND ECONOMIC Environment – economy linkage population and environment linl problem – environment as a p damages: land, water, air and fore	– environment as a nec kage – environmental o oublic good – valuation	ise as	an all	ocative	9			
UNIT III	ENVIRONMENTAL PROBLEMS					9			
	Economic development and envir pollution – sound pollution – ener and urbanization – global wa	gy use and environment	probl	em – po	ollution				

UNIT IV POLLUTION CONTROL

9 nts : -

Prevention, control and abatement of pollution – choice of policy instruments in developing countries – environmental law – sustainable development – indicators of sustainable development – environmental planning – environmental accounting.

urbanization, transport and technology – environmental degradation.

UNIT V POLICY MEASURES

9

Basic approach – design of environmental policy – Indian environment policies and performance – pollution control boards and their function.

TEXT BOOKS:

- 1. M. Karpagam (1993), Environmental Economics, Sterling Publishers, New Delhi.
- 2. S. Sankaran (1994) Environmental Economics, Margham, Madras
- 3. N.Rajalakshmi and DhulasiBirundha (1994), Environomics, Economic analysis of Environment, Allied publishers, Ahmedabad.
- 4. S. Varadarajan and S. Elangovan (1992), Environmental economics, Speed, Chennai.

- 1. Singh G.N (Ed.) (1991) Environmental Economics, Mittal Publications, New Delhi.
- 2. Garge, M.R. (Ed.) (1996), Environmental Pollution and Protection, Deep and Deep Publications, New Delhi.
- 3. Lodha, S.L (Ed.) (1991), Economics of Environment, Publishers, New Delhi. 8. The Hindu survey of Environment: Annual Reports.

	P01	PO2	P03	P04	P05	P06	P07
CO1	3			3			
CO2		2	2	3			3
CO3		3	3	3			
CO4			2	3		3	3
CO5				3	1	3	3
Total	1	1	2	3	1	2	2

Note:	Total	0	1-5	6-10	11-15	
	Scaled value	0	1	2	3	
	Relation	No	Low	Medium	High	

Semester	Course Code	Course Name	L	T	P	C
Ĭ	YEN104 C	Air Pollution and Control	3	0	0	3

- Classify the types and sources of air pollutants and to understand their effects on human health and the broader environment
- CO2 Differentiate and design various air pollution control technologies for particulates and gaseous pollutants
- **CO3** Choose appropriate technologies for removal of selective pollutants
- **CO4** Establish and implement air quality management components
- **CO5** Understand the sources and causes of Indoor Air Quality Problems

COURSE CONTENT

UNIT I INTRODUCTION TO AIR POLLUTANTS

Air resource management system – Air quality management – Scales of air pollution problem – Sources and classification of pollutants and their effect on human health vegetation and property – Global implications of air pollution – Meteorology Fundamentals – Atmospheric stability – Micrometeorology – Atmospheric turbulence – mechanical and thermal turbulence – Wind profiles – Atmospheric Diffusion – Atmospheric diffusion theories – Steady-state atmospheric diffusion equation – Plume rise – Diffusion models – Ambient air quality and emission standards – Air pollution indices – Air Quality Sampling and Monitoring.

9

9

9

UNIT II CONTROL OF PARTICULATE CONTAMINANTS

Settling chambers – Filters, gravitational, Centrifugal – multiple type cyclones, prediction of collection efficiency, pressure drop, wet collectors, Electrostatic Precipitation theory – ESP design – Operational Considerations – Process Control and Monitoring – Case Studies.

UNIT III CONTROL OF GASEOUS CONTAMINANTS

Absorption – principles – description of equipment-packed and plate columns – design and performance equations – Adsorption – principal adsorbents – Equipment descriptions – Design and performance equations – Condensation – design and performance equation – Incineration – Equipment description – design and performance equations – Biological Air Pollution Control Technologies – Bio-Scrubbers, Biofilters – Operational Considerations – Process Control and Monitoring – Case Studies.

UNIT IV EMERGING TRENDS

Process Modification – Automobile Air Pollution and its control – Fuel Modification – Mechanical Particulate Collectors – Entrainment Separation – Internal Combustion Engines – Membrane Process – Ultraviolet Photolysis – High Efficiency Particulate Air Filters – Technical & Economic Feasibility of selected emerging technologies for Air pollution control

UNIT V INDOOR AIR QUALITY

9

9

Sources and Causes of Indoor Air Quality Problems- Risk due to Indoor Air pollutants- sources of indoor Air pollutants- Indoor Air Quality Regulations-Indoor Air Quality Models- Indoor Air Quality Control- Case Studies

TEXT BOOKS

- 1. Noel de Nevers, Air Pollution Control Engineering, Mc Graw Hill, New York, 2010.
- Lawrence K. Wang, Norman C. Parelra, Yung Tse Hung, Air Pollution Control Engineering, Tokyo, 2004.
- 3. Anjaneyulu. Y, 'Air Pollution and Control Technologies', Allied Publishers (P) Ltd., India, 2002

- **1.** David H.F. Liu, Bela G. Liptak 'Air Pollution', Lewis Publishers, 2000.
- 2. Arthur C.Stern, 'Air Pollution (Vol.I Vol.VIII)', Academic Press, 2006.
- 3. Wayne T.Davis, 'Air Pollution Engineering Manual', John Wiley & Sons, Inc., 2000

	PO1	P02	PO3	P04	P05	P06	P07
CO1	2	3		1			
CO2	2	2	2	2		1	
CO3		3	3	3	1	2	1
CO4			3	3		3	2
CO5	3				2		
Total	2	2	2	2	1	2	1

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Seme:	ster Course Code YEN105A	Course Name Instrumental methods and analysis of environmental pollutants	nental methods and 3 0 0 is of environmental				
Course	Outcome: After the complet	ion of the course, students will be able	? to				
CO1	Analyse the principles Environmental monitoring	of volumetric and instrumenta	l analytical	metho	ods in		
CO2	Use statistical methods for	evaluating and interpreting data of	environmer	ıtal inte	rest		
CO3	Discriminate various elect	rochemical methods					
CO4	Summarize various mater	ial characterization techniques and	its principles	;			
CO5	Demonstrate the analys	is through Non – dispersive infra	-red (NDIR)) analy:	zer		
COURS	E CONTENT						
UNIT I	INTRODUCTION					9	
UNIT I	Instrumental Methods, Selection of method, Precision and Accuracy, Errors in measuring signals, Noise/signal ratio, base line drift, Indicator tubes.						
UNIT I	II CHROMATOGRAPH	IC METHODS				9	
		olumn, Paper and thin layer chro GC), GC-MS, High performance omatrography (IC).	· .		-		
UNIT I	V ELECTRO AND RAD	IO ANALYTICAL METHODS				9	
	•	tentiometry, Coulometry, Ampe Analysis (NAA), X-ray Fluores ethods.	•	_			
UNIT V		ITORING INSTRUMENTS				9	
	analyzer for Nox, F	infra-red (NDIR) analyzer for SO ₂ , A jection analysis; permeation dev	uto analyze				

TEXT BOOKS

- 1. Willard. H., Merritt, L., Dean, D.A. and Settle. F.A. 'Instrumental methods of analysis, $7^{\rm th}$ Edn. Words Worth, New York, 2004.
- 2. Eckman D.P. "Industrial Instrumentation", Wiley Eastern Ltd., 1989.

- 3. Considine D M and Considine G D "Process Instruments Controls" Handbook 3rd Edition, McGraw Hill Book Co., NY, 1990.
- 4. Scborg D E, Edgar T.F and Mellichamp D.A, "Process Dynamics and Control" John Wiley 1989

- 1. Fribance, "Industrial Instrumentation Fundamentals" ,Mc Graw Hill Co. Inc. New York 1985
- 2. Ewing 'Instrumental Methods of Chemical Analysis, 5th Edn., McGraw-Hill, New York, 1995.
- 3. Ernest Doebelin, Measurement systems, McGraw Hill Book, Co., NY, 1975.
- 4. Astrom K.J., Bjon wittenmark, Computer controlled systems, Prentice- Hall of India, New Delhi 1994.
- 5. Cartis Johnson, Process Control Instrumentation Technology, Prentice-Hall of India, New Delhi 1993.

	P01	P02	P03	P04	P05	P06	P07
CO1	1	3	3	3	3		1
CO2	2	3	2	3	3	1	3
CO3	3		3	2	2		3
CO4	2		3	2	2	2	2
CO5	2	2	2	3	2	3	3
Total	2	2	3	3	3	2	3

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Semester	Course Code	Course Name	L	T	P	C
I	YEN105B	Theory and practice of industrial waste water	3	0	0	3
		treatment				

- **CO1** Characterize the wastewater generated from a specific industry and understand the possible impacts on the environment.
- Identify the means and methods to reduce the quantity of generation of wastewater from an industrial premise by performing source reduction techniques and waste Audit
- Probe the possible recycling and reuse opportunities for the generated wastewater and residuals by employing suitable treatment units.
- CO4 Understand the feasibility and benefits of individual, common and joint treatment of industrial wastewater.
- **CO5** Design waste treatment flow sheets for industries.

COURSE CONTENT

UNIT I INTRODUCTION

Industrial scenario in India– Industrial activity and Environment – Uses of Water by industry – Sources and types of industrial wastewater – Nature and Origin of Pollutants – Industrial wastewater and environmental impacts – Regulatory requirements for treatment of industrial wastewater – Industrial waste survey – Industrial wastewater monitoring and sampling –generation rates, characterization and variables –Toxicity of industrial effluents and Bioassay tests – Major issues on water quality management.

9

9

9

UNIT II INDUSTRIAL POLLUTION PREVENTION

Prevention and Control of Industrial Pollution – Benefits and Barriers – Waste management Hierarchy – Source reduction techniques – Pollution Prevention of Assessment – Material balance – Evaluation of Pollution prevention options –Cost benefit analysis – payback period – Waste minimization Circles.

UNIT III INDUSTRIAL WASTEWATER TREATMENT

Equalization – Neutralization – Oil separation – Flotation – Precipitation – Heavy metal Removal– Aerobic and anaerobic biological treatment – Sequencing batch reactors – High Rate reactors – Chemical oxidation – Ozonation – carbon adsorption – Photocatalysis – Wet Air Oxidation – Evaporation – Ion Exchange – Membrane Technologies – Nutrient removal.- Treatability studies.

UNIT IV WASTEWATER REUSE AND RESIDUAL MANAGEMENT

Individual and Common Effluent Treatment Plants – Joint treatment of industrial and domestic wastewater – Zero effluent discharge systems – Quality requirements for Wastewater reuse – Industrial reuse , Present status and issues - Disposal on water and land – Residuals of industrial wastewater treatment – Quantification and characteristics of Sludge – Thickening, digestion, conditioning, dewatering and disposal of sludge – Management of RO rejects

UNIT V CASE STUDIES

9

9

Industrial manufacturing process description, wastewater characteristics, source reduction options and waste treatment flow sheet for Textiles – Tanneries – Pulp and paper – metal finishing – Oil Refining – Pharmaceuticals – Sugar and Distilleries.

TEXT BOOKS

- 1. Eckenfelder, W.W., 'Industrial Water Pollution Control', Mc-Graw Hill, 2000.
- 2. Nelson Leonard Nemerow, "Industrial waste treatment contemporary practice and vision for the future", Elsevier, Singapore, 2007
- 3. Paul L. Bishop, 'Pollution Prevention: Fundamentals and Practice', Mc-Graw Hill International, Boston, 2000.

- 1. Nemerow, N.I, Butterworth-Heinemann, "Theories of practice of Industrial Waste Treatment", 2006.
- 2. Gurnham, C.F., "Principles of Industrial Waste Treatment "CRC Press, 1999.
- 3. Frank Woodard, 'Industrial waste treatment Handbook', Butterworth Heinemann, New Delhi, 2001

	P01	PO2	PO3	PO4	P05	P06	P07
CO1	2	3	2		1		1
CO2	1	2	2	3	1		
CO3	1	2	2	3	2	1	1
CO4	2	1		2		1	1
CO5	1	2	3	3	2		3
Total	2	2	2	3	2	1	2

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Semester	Course Code	С	ourse Name		L	T	P	C
I	YEN105C		llution and Con Engineering	trol	3	0	0	3
Course Ou	tcome: After the com	pletion of the co	ourse, students will	be able to				
co1 0v	verview noise polluti	on including m	ethods for prever	ition and con	trol.			
co2 Ap	oply the theory of no	ise pollution to	practical enginee	ring situatio	ns.			
CO3 Ga	nin knowledge on cor	ncepts of sound	d wave propagatio	n and its into	ensity	7		
CO4 Us	se engineering instru	ımentation and	d principles to un	dertake a la	borat	ory ir	nvestiga	ation
in	noise pollution. now about the legal r	equirements fo	or Noise pollution	Control and	Mana	igeme	ent	
COURSE	CONTENT							
UNIT I	SOURCES OF NO	DISE						9
OMITI			raffic, Air traffic	, Construct	ion a	nd P	ublic	,
UNIT II	Works, Indoor S EFFECTS OF NO		c Gatherings					9
	9		nterference with				_	
	Loss, Disturban Miscellaneous e		tress, annoyanc ire limits	e, Effects of	t per	torm	ance,	
UNIT III		•						9
	Propagation of level and decibe						ound	
UNIT IV		_		-				9
	Sound level Measurement, P		pes, Compone	nts, Comr	nuni	ty I	Voise	
UNIT V	NOISE POLLUT	ION CONTRO	L					9
	Control of sou	nd transmiss Public and V	oise, Control Me sion, Reduction Vorkers, Ear Pr	in Length	of	expo	sure,	
TEXT BO	OOKS							

- "Environmental Health Criteria 12", Noise, World Health Organisation Publication, Geneva, 1980.
- Patrick, C.F., "Environmental Noise Pollution", John Wiley and Sons, 1977. 2. Burs, W., Lippin Cott., "Noise and Man", Philadelphia, 1969.

	P01	PO2	P03	P04	P05	P06	P07
CO1	3	1	1				
CO2		2	2	2		1	
CO3	3						
CO4		3	3	2		2	
CO5		2	2		3	1	1
Total	2	2	2	1	1	1	1

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Semester	Course Code	Course Name	L	T	P	C	
II	YEN204A	Environmental Biotechnology	3	0	0	3	

- **CO1** Understand the characteristics and structure of microbes.
- **CO2** Explain the mechanisms of detoxification and biodegradation of solid wastes
- **CO3** List out the different methods for bioremediation of environment and to design biological system for the removal of nutrients
- **CO4** Evaluate the benefit of microorganisms in degrading organic contaminants and to choose suitable microorganism for biodegradation of selected compounds.
- **CO5** Select suitable assessment methods for bioremediation

COURSE CONTENT

UNIT I INTRODUCTION

5

8

Principles and concepts of environmental biotechnology—usefulness to mankind, current status.

UNIT II DETOXIFICATION OF ENVIRONMENTAL POLLUTANTS

Degradation of high concentrated toxic pollutants—halogenated, non-halogenated, petroleum hydrocarbons, metals. Mechanisms of detoxification-oxidation, dehalogenation, biotransformation of metals, biodegradation of solid wastes.

UNIT III MICROBIAL TECHNOLOGY FOR WASTE TREATMENT 12

Biotechnological remedies for environmental pollution—decontamination of groundwater systems, subsurface environment—reclamation concepts—bioremediation. Production of proteins – biofertilizers. Physical, chemical and microbiological factors of composting – health risk – pathogens – odour management – Microbial cell/enzyme technology – adapted microorganisms – biological removal of nutrients – algal biotechnology and applications in agriculture – role of extracellular polymers. Biogas technology – case studies.

UNIT IV RECOMBINANT DNA TECHNOLOGY AND GENETIC APPLICATION 10

Concept of rDNA technology – expression vectors – cloning of DNA – mutation – construction of microbial strains, radioactive probes, protoplast fusion technology – applications.

Environmental effects and ethics of microbial technology – safety of genetically engineered organisms – microbial containment – Risk assessment

TEXT BOOKS

- 1. Chaudhury, G.R. 'Biological degradation and Bioremediation of toxic chemicals', Dioscorides Press, Oregon, 1994.
- 2. Martin.A.M, 'Biological degradation of wastes', Elsevier Applied Science, London, 1991.
- 3. Sayler, Gray S. Robert Fox and James W. Blackburn Environmental Biotechnology for Waste Treatment, Plenum Press, New York, 1991.
- 4. Blaine Metting.F (Jr.,) Soil Microbiology Ecology, Marcel Dekker Inc., 1993.

- 1. Wainwright, M, An Introduction to Environmental Biotechnology, 1999.
- 2. Old, R.W., and Primrose, S.B., Principles of Gene Manipulation 3rd Ed. Blackwell Sci. Publ., Cambridge, 1985.
- 3. Bruce E. Rittmann, Eric Seagren, Brian A.Wrenn and Albert J. Valocchi, Chittaranjan Ray, Lutgarde Raskin, Insitu Bioremediation (2nd Edition) Nayes Publication, U.S.A, 1991

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	1	2			1		
CO2		2	2		1		
CO3	3	2	2				
CO4		3	3	3		2	
CO5	2	2	2	2		2	1
Total	2	3	2	1	1	1	1

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Semester	Course Code	Course Name	L	T	P	C
II	YEN204B	Environmental	3	0	0	3
		Geotechnology				

- **CO1** Identify the origin, nature, and extent of contamination in field.
- **CO2** Predict the retention and flow properties of contaminants.
- CO3 Adopt suitable sampling techniques for geoenvironmental characterization
- **CO4** Suggest the remediation techniques for decontamination
- **CO5** Gain knowledge on advanced soil characterization techniques

COURSE CONTENT

UNIT I SOIL PROFILE

Soil as a multiphase system; Soil – environment interactions; Properties of water in relation to porous media; Water cycle with special reference to soil medium.

UNIT II SOIL MINERALOGY

Soil mineralogy; significance of mineralogy in determining soil behavior; Mineralogical characterization

UNIT III MECHANISMS OF SOIL-WATER INTERACTIONS

Diffuse double layer models; Force of attraction and repulsion; Soil- Water contaminant interaction; Theories of Ion exchange; Influence of organic and inorganic chemical interaction.

UNIT IV WASTE & ITS TRANSPORT IN SOIL

Concepts of waste containment facilities; desirable properties of soil; contaminant transport and retention; contaminated site remediation

UNIT V REMEDIAL TECHNIQUES

Introduction to advanced soil characterization techniques; volumetric water content; gas permeation in soil; electrical and thermal properties; pore –size distribution; contaminant analysis

TEXT BOOKS

- 1. Geotechnical and Geo-environmental Engineering Handbook, Rowe R. K, Kluwer Academic Publishers 2001
- 2. Fundamentals of Soil Behavior, Mitchell J.K and Soga K., John Wiley and Sons Inc. 2012
- 3. Introduction to Environmental Geotechnology, Fang, H.Y., CRC press 1997
- 4. Geotechnical Practice for Waste Disposal, Daniel D.E, Chapman and Hall 1993

- **1.** Clay Barrier Systems for Waste Disposal Facilities, Rowe J.R., Quigley R.K., R.M. and Booker, Chapman and Hall 1995
- **2.** Geoenvironmental Engineering: Principles and Applications, Reddi L.N. and Inyang H.F, Marcel Dekker Inc 2000
- **3.** Waste Containment Systems, Waste Stabilization And Landfills: Design and Evaluation, Sharma H. D. And Lewis S.P, John Wiley & Sons Inc 1994

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	2	2					
CO2		2	3	3			
CO3		3	3	3		2	
CO4		2	3	3	2		
CO5	3					3	2
Total	1	2	2	2	1	1	1

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Semester Course Code		Course Name	L	T	P	C
II	YEN204C	Solid and Hazardous Waste Management	3	0	0	3

- **CO1** Understand the present scenario of solid waste management in India, framework and regulatory requirements applicable in India.
- **CO2** Explain the various functional elements involved in waste management system
- **CO3** Gain good knowledge on composition and characterization of waste based on which a recommendation can be made on how to handle the given waste
- Knowledge on various methods available for processing / treatment and the options available for ultimate disposal of waste, recent advancement in recycling and reuse, waste to energy generation.
- Device a better strategy to adopt the principle of cradle to grave to dispose waste.

COURSE CONTENT

UNIT I SOURCES, CLASSIFICATION AND REGULATORY FRAMEWORK 9

Types and Sources of solid and hazardous wastes - Need for solid and hazardous waste management - Elements of integrated waste management and roles of stakeholders - Salient features of Indian legislations on management and handling of municipal solid wastes, hazardous wastes, biomedical wastes, lead acid batteries, electronic wastes , plastics and fly ash - Financing waste management.

UNIT II WASTE CHARACTERIZATION AND SOURCE REDUCTION 9

Waste generation rates and variation - Composition, physical, chemical and biological properties of solid wastes – Hazardous Characteristics – TCLP tests – waste sampling and characterization plan - Source reduction of wastes –Waste exchange - Extended producer responsibility - Recycling and reuse

UNIT III STORAGE, COLLECTION AND TRANSPORT OF WASTES 9

Handling and segregation of wastes at source – storage and collection of municipal solid wastes – Analysis of Collection systems - Need for transfer and transport – Transfer stations Optimizing waste allocation–

compatibility, storage, labeling and handling of hazardous wastes – hazardous waste manifests and transport

UNIT IV WASTE PROCESSING TECHNOLOGIES

9

Objectives of waste processing – material separation and processing technologies – biological &chemical conversion technologies – methods and controls of Composting - thermal conversion technologies, energy recovery – incineration – solidification & stabilization of hazardous wastes- treatment of biomedical wastes

UNIT V WASTE DISPOSAL

9

Waste disposal options – Disposal in landfills - Landfill Classification, types and methods – site selection - design and operation of sanitary landfills, secure landfills and landfill bioreactors – leachate and landfill gas management – landfill closure and environmental monitoring – Rehabilitation of open dumps – landfill remediation

TEXT BOOKS

- 1. George Techobanoglous et al, "Integrated Solid Waste Management", McGraw Hill, 2014.
- 2. Manual on Municipal Solid waste Management, CPHEEO, Ministry of Urban Development, Govt. Of. India, New Delhi, 2000.
- 3. Techobanoglous Thiesen Ellasen; Solid Waste Engineering Principles and Management, McGraw Hill 1997.

- 1. R.E.Landrefh and P.A.Rebers," Municipal Solid Wastes-Problems & Solutions", Lewis, 1997.
- 2. Blide A.D.& Sundaresan, B.B,"Solid Waste Management in Developing Countries", INSDOC, 1993.
- 3. Georges E. Ekosse, Rogers W'O Okut-Uma, Pollution control & Waste management in Developing Countries, Commonwealth Publishers, New Delhi, 2000.
- 4. B. B. Sundaresan, A. D. Bhide Solid Waste Management, Collection, Processing and Disposal, Mudrashilpa Offset Printers, 2001.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	2	1				1
CO2	2	3	2	2		2	1
CO3	3	3	3	3	1		1
CO4	2	3	2	2	3	2	1
CO5	1		2	3	3	3	2
Total	3	3	2	2	2	2	2

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Semester	Course Code	Course Name	L	T	P	C
II	YEN205A	Operation and Maintenance of Water and Wastewater Treatment Systems	3	0	0	3

CO1 Acquire knowledge required to operate and maintain water treatment plants
 CO2 Gain knowledge on wastewater treatment plants including trouble shooting.
 CO3 Understand the preventive and corrective maintenance of sewage pumps
 CO4 Identify the hazards in Chemical Handling processes
 CO5 Understand the construction, Operation and Maintenance aspects of Biological Treatment processes

COURSE CONTENT

UNIT I ELEMENTS OF OPERATION AND MAINTENANCE

Strategy for Good Operation and Maintenance Knowledge of process and equipment- Preventive and Corrective maintenance scheduling- Operation and Maintenance Plan - Proper and adequate tools, Spare units and parts - Training Requirements- Laboratory control- Records and Reports-Housekeeping - Corrosion prevention and control -Sampling procedure-Analytical techniques- Code of practice for analytical laboratories-Measurement of Flows, Pressures and Levels -Safety in O&M Operations - Management Information System - Measures for Conservation of Energy management of residues from plant maintenance.

UNIT II OPERATION AND MAINTENANCE OF WATER INTAKES AND SUPPLY SYSTEMS

Operational problems, O&M practices and Records of Operation of Reservoir and Intakes - Causes of Failure of Wells- Rehabilitation of Tube wells & Bore Wells- Prevention of Incrustation and Corrosion Maintenance of Lined and Unlined Canals- Problems in Transmission Mains- Maintenance of Pipelines and Leakage Control- Repair Method for Different types of Pipes- Preventive and corrective maintenance of water pumps – Algal Control - O&M of Service Reservoirs - Problems in the water Distribution System and remedies- Water Quality Monitoring and Surveillance- Water Meters, Instrumentation - Computerised Water Billing System

UNIT III OPERATION AND MAINTENANCE OF SEWER SYSTEMS

Components and functions of sewer system – Conduits or pipes – Manholes – Ventilating shaft – Maintenance of collection system – Operational Problems– Clogging of pipes – Hazards –Precautions against gas hazards – Precautions against infections – Devices for cleaning the conduits – Preventive and corrective maintenance of sewage pumps –operation and maintenance of sewage pumping stations Maintenance Hazards and Operator Protection -Case Studies.

UNIT IV OPERATION AND MAINTENANCE OF PHYSICO-CHEMICAL TREATMENTS

Operation and maintenance in screen chamber, Grit Chamber and clarifiers-Operation issues, troubleshooting guidelines and record keeping requirements for clarifier, Equalization basins, Neutralization unit - Chemical storage and mixing equipment - Chemical metering equipment - Flash mixer –Filters, thickeners and centrifuges- Filter Press - Start-up and maintenance inspection - Motors and Pumps - Hazards in Chemical Handling – Jar Test - Chlorination Equipment - Membrane process systems- SDI and LSI determination- Process Chemistry and Chemical dosage calculations-Case Studies.

UNIT V OPERATION AND MAINTENANCE OF BIOLOGICAL TREATMENT

Construction, Operation and Maintenance aspects of activated sludge process, trickling filters, anaerobic digester, SBR, UASBR, MBRs- Startup and Shutdown Procedures-DO, MLSS and SVI monitoring- Trouble shooting guidelines – Interaction with other Treatment Processes - Planning, Organizing and Controlling of plant operations – capacity building, case studies of Retrofitting- Case studies.

TEXT BOOKS

- 1. Metcalf & Eddy, Inc., G. Tchobanoglous, H. D. Stensel, R. Tsuchihashi, and F. L.Burton. "Wastewater Engineering: Treatment and Resource Recovery"5th edition). McGraw Hill Company, 2014.
- 2. Ananth S Kodavasal, The STP Guide-Design, Operation and maintenance, Karnataka State Pollution Control Board, Bangalore, 2011.
- 3. Frik Schutte, Handbook for the operation of water Treatment Works, The Water Research Commission, The Water Institute of Southern Africa, TT265/06, 2006.

- 1. CPHEEO, Manual on operation and maintenance of water supply systems, Central Public Health and Environmental Engineering Organisation, Ministry of Urban Development, Government of India, 2005.
- 2. Ministry of Drinking Water and Sanitation, operation and maintenance manual for rural water supplies, Government of India, 2013.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	2	2				2	
CO2		2	2	3		2	
CO3		2	3	2		3	
CO4	3	2	2	2	2	1	
CO5	2	3	3	2	2	3	2
Total	2	3	2	2	1	3	1

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Semester	Course Code	Course Name	L	T	P	C
III	YEN205B	Ground Water Contamination and Transport Modeling	3	0	0	3

- **CO1** Develop flow and transport model for contaminant in subsurface water
- **CO2** Apply mass balance principles to develop and solve simple water quality models.
- **CO3** Differentiate various numerical techniques for solving flow and transport equations
- **CO4** Develop reactive transport model for reactive species
- **CO5** Apply the software packages to develop contaminant transport model for field condition

COURSE CONTENT

UNIT I INTRODUCTION TO TRANSPORT PHENOMENA

9

Transport phenomenon, diffusion, dispersion, advection, adsorption, conservative and non-conservative pollutants, sources and sinks- point and nonpoint.

UNIT II FLOW AND TRANSPORT EQUATIONS

9

Governing Equations for flow and transport in surface and subsurface waters, chemical and biological process models, simplified models for lakes, streams, and estuaries.

UNIT III MODEL COMPLEXITY

q

Selection and development, model resolution, coupled and uncoupled models, Linear and nonlinear models, solution techniques, data requirements for calibration, application and evaluation of environmental control.

UNIT IV NUMERICAL MODELS

9

FDM, FEM and Finite volume techniques, explicit vs. implicit methods, numerical errors, and stability, High resolution techniques.

UNIT V SOFTWARE MODELLING

9

Stream quality modeling and Groundwater transport modeling using software.

TEXT BOOKS

- 1. Alexander H.-d Cheng, Jacob Bear, "Modeling Groundwater Flow and Contaminant Transport", springer 02, 2011.
- 2. PascualHoracio Benito," Approaches to Modeling Contaminant Transport in Porous Media: Pore-Scale to Regional Scale Investigations,"Proquest, Umi Dissertation Publishing, 09-2011.
- 3. Mark Goltz, Junqi Huang," Analytical Modeling of Solute Transport in Groundwater:

Using Models to Understand the Effect of Natural Processes on Contaminant Fate and Transport I", John Wiley & Sons, Aug 2010.

- 1. Rafael Antonio PrietoPiedrahita," Treatment of Contaminated Sediments Using Reactive Cap Technology: Characterization and Modeling of Geotechnical, Hydraulic and Contaminant Transport", Proquest, Umi Dissertation Publishing, Sep 2011.
- 2. ChunmiaoZheng, Gordon D. Bennett," Applied Contaminant Transport Modeling", Wiley-Interscience, February 2002.
- 3. Shahar Shlomi,"Combining Geostatistical Analysis and Flow-And-Transport Models to Improve Groundwater Contaminant Plume Estimation, "Proquest, Umi Dissertation Publishing, 2011.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	2	1	3	3		1	2
CO2		2	2	3		1	2
CO3	2	3	3	3		3	3
CO4		3	2	3	1	3	3
CO5		3	3	2		3	3
Total	1	3	3	3	1	3	3

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

II	YEN205C Simulation and Modeling in 3 0 0 3 Environmental Systems
Course (Outcome: After the completion of the course, students will be able to
CO1	To develop contaminant transport model for natural systems
CO2	To predict the quality of water in river, lakes and estuaries using specific models
CO3	To solve the transport equation using numerical techniques
CO4	To estimate the concentration of pollutant in ambient air using dispersion models
CO5	Developed conceptual schematics required for system analysis and an ability to translate pertinent criteria into system requirements
	SE CONTENT
UNIT I	Eutrophication of lakes – conventional pollutants in rivers – toxic organic chemicals – modeling trace metals – mass balance and waste load allocation for rivers – study state model for metals in lakes – metals migration in soils . 9
UNIT I	Atmospheric deposition and biogeochemistry – genesis of acid deposition – neutralizing capacities – biogeochemical models – ecological effects – critical loads – case studies –metal deposition.
	Global change and Global cycles – Climate change and general circulation models – global carbon box model – nitrogen cycle – Global sulfur cycle –

Course Name

L

T

 \mathbf{C}

TEXT BOOKS

trace gases.

Semester

Course Code

- 1. Environmental Modelling by Gerald .L. Schnoor, John Wiley and sons, Inc.
- 2. Process Dynamics in Environmental Systems by Walter .J. Weber,Jr and Francis ,John Wiley and sons, Inc.
- 3. Transport Modelling for Environmental Engineers and Scientists by Mark .M. Clark, John Wiley and Sons, Inc.

	P01	P02	P03	P04	P05	P06	P07
CO1	3				2		2
CO2		3	3	3	2	1	
CO3		2	2		1	2	
CO4		2	3	1		1	
CO5		3	3	2		2	2
Total	1	2	3	2	1	2	1

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Seme	nester Course Code Course Name			L	T	P	C	
II		YEN301A	Remote Sensing and GIS for 3 0 Environmental Applications				0	3
Course	Outcon	ne: After the complet	ion of the course, students will be o	able to				
CO1	Sumn	narize the basic spec	ctral mechanism behind remote s	sensing and	d GIS	techr	niques	
CO2	Expla	in different softwar	e for data creation, analysis and r	modeling				
CO3		rstand geo databas cations	se development and geo-spatia	l analysis	for	envir	onmen	tal
CO4	Apply	the image processi	ng techniques for various enviro	nmental pr	oble	ems		
CO5	Apply	the Waste Manager	ment and monitoring of pollution	n index usi	ing (SIS Te	chniqu	es
COL	IDCE C	ONTENT						
COU	KSE C	UNIENI						
HINH	ті	FIINDAMENTAI	S OF DEMOTE SENSING					o
UNI	ΤΙ	Definition, Physi	S OF REMOTE SENSING cs of Remote Sensing, Electr atmosphere, Spectral reflec	_				
UNI'		Definition, Physi interactions with	cs of Remote Sensing, Electr n atmosphere, Spectral reflec	_				d its
		Definition, Physi interactions with vegetation PLATFORMS AN Aerial Photograp	cs of Remote Sensing, Electr n atmosphere, Spectral reflec	tance of o	eart	h ma	terials	d its and
UNI		Definition, Physi interactions with vegetation PLATFORMS AN Aerial Photograp	cs of Remote Sensing, Electron atmosphere, Spectral reflection D SENSORS ohs, Active and passive sense and their sensors.	tance of o	eart	h ma	terials	d its and
UNI	T II	Definition, Physi interactions with vegetation PLATFORMS AN Aerial Photograp satellite in orbit at DATA PROCESSION	cs of Remote Sensing, Electron atmosphere, Spectral reflection D SENSORS ohs, Active and passive sense and their sensors.	stance of e	eart a pr	h ma	terials ts, Vai	d its and 9 rious
UNI	T II	Definition, Physicinteractions with vegetation PLATFORMS AN Aerial Photograp satellite in orbit at DATA PROCESSION Data analysis -	cs of Remote Sensing, Electron atmosphere, Spectral reflection at the Spectral reflection	stance of e	eart a pr	h ma	terials ts, Vai	d its and 9 rious
UNI	T II	Definition, Physi interactions with vegetation PLATFORMS AN Aerial Photograp satellite in orbit at DATA PROCESSI Data analysis - classification GIS	cs of Remote Sensing, Electron atmosphere, Spectral reflection at the Spectral reflection	sors, Data	eart a pr mag	oduc e Pr	terials ts, Vai	d its and 9 rious 9 ng -
UNI	T II T III T IV	Definition, Physicinteractions with vegetation PLATFORMS AN Aerial Photograps satellite in orbit at a part of the procession of the proc	cs of Remote Sensing, Electron atmosphere, Spectral reflection atmosphere, Spectral reflection and passive sense and their sensors. ING Visual Interpretation and	sors, Data	eart a pr mag	oduc e Pr	terials ts, Vai	d its and 9 rious 9 ng -

TEXT BOOKS

1. Anji Reddy.M," Textbook of Remote Sensing and GIS", BPB Publications, 2006

optimization of Route for collection of MSW

2. T. M. Lillesand and R.W.Kiefer, "Remote Sensing and Image Interpretation" , Wiley,2011

conservation of resources, Identification of site for waste disposal -

3. E. T. Engman and R. J. Curney," Remote Sensing in Hydrology,"Chapman&Hall,1990

- 1. Lillies and T.M. and Kiefer, R.W., "Remote Sensing and Image Interpretation", John Wiley and Sons, 1994.
- 2. Burrough, P.A. and McDonnell, R.A., "Principles of Geographical Information Systems", Oxford University Press, 1998. 3. Lintz, J. and Simonet, "Remote Sensing of Environment", Addison Wesley Publishing Company, 1994.
- 3. David Martin," Geographic Information Systems", Routledge,1995.

	P01	P02	P03	P04	P05	P06	P07
CO1	3				2		
CO2		3	3	2			
CO3	2	1	2	1	2	1	
CO4		2	3	1	2	1	2
CO5	2	2	3	3	3	2	2
Total	2	2	3	2	2	1	1

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Semester	Course Code	Course Name	L	T	P	C
II	YEN301B	Sustainable Engineering	3	0	0	3

- **CO1** Understand the relevance and the concept of sustainability and the global initiatives
- **CO2** Explain the different types of environmental pollution problems and their sustainable solutions
- **CO3** Discuss the environmental regulations and standards
- CO4 Outline the concepts related to conventional and non-conventional energy
- CO5 Demonstrate the broad perspective of sustainable practices by utilizing engineering knowledge and principles

COURSE CONTENT

UNIT I SUSTAINABILITY

Introduction, concept, evolution of the concept; Social, environmental and economic sustainability concepts; Sustainable development, Nexus between Technology and Sustainable development; Millennium Development Goals (MDGs) and Sustainable Development Goals (SDGs), Clean Development Mechanism (CDM).

UNIT II ENVIRONMENTAL POLLUTION

Air Pollution and its effects, Water pollution and its sources, Zero waste concept and 3 R concepts in solid waste management; Greenhouse effect, Global warming, Climate change, Ozone layer depletion, Carbon credits, carbon trading and carbon foot print, legal provisions for environmental protection.

UNIT III ENVIRONMENTAL MANAGEMENT STANDARDS

ISO 14001:2015 frame work and benefits, Scope and goal of Life Cycle Analysis (LCA), Circular economy, Bio-mimicking, Environment Impact Assessment (EIA), Industrial ecology and industrial symbiosis.

UNIT IV RESOURCES AND ITS UTILISATION

Basic concepts of Conventional and non-conventional energy, General idea about solar energy, Fuel cells, Wind energy, Small hydro plants, bio-fuels, Energy derived from oceans and Geothermal energy.

UNIT V SUSTAINABILITY PRACTICES

Basic concept of sustainable habitat, Methods for increasing energy efficiency in

buildings, Green Engineering, Sustainable Urbanisation, Sustainable cities, Sustainable transport.

TEXT BOOKS

- 1. Allen, D. T. and Shonnard, D. R., Sustainability Engineering: Concepts, Design and Case Studies, Prentice Hall.
- 2. Bradley. A.S; Adebayo, A.O., Maria, P. Engineering applications in sustainable design and development, Cengage learning
- 3. Environment Impact Assessment Guidelines, Notification of Government of India, 2006
- 4. Mackenthun, K.M., Basic Concepts in Environmental Management, Lewis Publication, London, 1998

- 1. ECBC Code 2007, Bureau of Energy Efficiency, New Delhi Bureau of Energy Efficiency Publications-Rating System, TERI Publications GRIHA Rating System
- 2. Ni bin Chang, Systems Analysis for Sustainable Engineering: Theory and Applications, McGraw-Hill Professional
- 3. Twidell, J. W. and Weir, A. D., Renewable Energy Resources, English Language Book Society (ELBS).
- 4. Purohit, S. S., Green Technology An approach for sustainable environment, Agrobios Publication

	P01	P02	PO3	P04	P05	P06	P07
CO1	3				2		2
CO2		2	2	2	1	1	
CO3	3				2	2	2
CO4	3					2	
CO5		2	2	2	2	2	1
Total	2	1	1	1	2	2	1

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Semester	Course Code	Course Name	L	T	P	C
III	YEN301C	Membrane Separation for Water and Wastewater	3	0	0	3

- **CO1** Differentiate various membrane processes, principles, separation mechanisms and its applications
- **CO2** Explain the selection criteria for different membrane processes
- **CO3** Design membrane bioreactors
- **CO4** Develop synthetic membranes by various preparation techniques
- **CO5** Recommend the pollution control methods for specific industries

COURSE CONTENT

UNIT I MEMBRANE FILTRATION PROCESSES

10

Solid Liquid separation systems- Theory of Membrane separation – mass Transport Characteristics - Cross Flow filtration - Membrane Filtration-Flux and Pressure drop -Types and choice of membranes, porous, non porous, symmetric and asymmetric – Plate and Frame, spiral wound and hollow fibre membranes – Liquid Membranes

UNIT II MEMBRANE SYSTEMS

10

Microfiltration principles and applications – Ultra filtration principles and applications - Nano Filtration principles and applications – Reverse Osmosis: Theory and design of modules, assembly, plant process control and applications – Electro dialysis: Ion exchange membranes, process design- Pervaporation – Liquid membrane – Liquid Pertraction – Supported Liquid Membrane and Emulsion Liquid membrane - Membrane manufactures – Membrane Module/Element designs – Membrane System components – Design of Membrane systems - pump types and Pump selection – Plant operations – Economics of Membrane systems

UNIT III MEMBRANE BIOREACTORS

9

Introduction and Historical Perspective of MBRs, Biotreatment Fundamentals, Biomass Separation MBR Principles, Fouling and Fouling Control, MBR Design Principles, Design Assignment, Alternative MBR Configurations, Commercial Technologies, Case Studies

UNIT IV PRETREATMENT SYSTEMS

8

Membrane Fouling – Control of Fouling and Concentration Polarisation-Pretreatment methods and strategies – monitoring of Pretreatment – Langlier Index, Silt Density Index, Chemical cleaning, Biofoulant control

UNIT V CASE STUDIES

8

Case studies on the design of membrane based water and wastewater treatment systems – zero Liquid effluent discharge Plants – Desalination of brackish water.

TEXT BOOKS

- 1. Anthony Wachinski, Membrane Processes for water reuse, McGraw-Hill, USA, 2013
- 2. WEF, Membrane Bioreactors, WEF manual of Practice No.36, Water Environment Federation, USA.2012. Symon Jud, MBR Book "Principles and application of MBR in water and wastewater treatment", Elservier, 2006.
- 3. Yamamoto K. and Urase T, "Membrane Technology in Environmental management", special issue, Water Science and technology, Vol.41, IWA Publishing, 2000.

- 1. Jorgen Wagner, "Membrane Filtration handbook, Practical Tips and Hints, 2nd Edition, Revision2, Osmonics Inc., 2001.
- **2.** Baker, R.W., "Membrane technology and applications", 2nd., John Wiley 2004 7 Noble, R.D. and Stern, S.A., "Membrane Separations Technology: Principles and Applications", Elservier, Netherlands, 1995.

	P01	PO2	P03	P04	P05	P06	P07
CO1	3	2	2				
CO2	3	2	1	2			
CO3		2	3	2	2	1	1
CO4		2	1	1	1	2	2
CO5		3			3	2	1
Total	2	3	2	1	2	1	1

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High